Gamma matrix conventions in our code

T. Blum

June 27, 2005

Start with the Dirac operator in Minkowski space

$$D - m = i\gamma^{\mu}\partial_{\mu} - m \tag{1}$$

$$= i\gamma^0 \frac{\partial}{\partial t} + i\gamma^i \frac{\partial}{\partial x^i} - m \tag{2}$$

Note carefully the use of the *covariant* partial derivative. Now, analytically continue to Euclidean space-time,

$$t \rightarrow -i\tau$$
 (3)

$$\gamma_E^i = -i\gamma^i$$

$$\gamma_E^4 = \gamma^0$$
(5)

$$\gamma_E^4 = \gamma^0 \tag{5}$$

The above definitions result because we must flip the sign of both time and space derivative terms to have the same sign as the mass term:

$$D - m = i\gamma^{\mu}\partial_{\mu} - m \tag{6}$$

$$\rightarrow i\gamma^4 \frac{\partial}{\partial (-i\tau)} + -(-i)\gamma^i \frac{\partial}{\partial x^i} - m \tag{7}$$

$$= -\gamma^4 \frac{\partial}{\partial \tau} - \gamma_E^i \frac{\partial}{\partial x^i} - m \tag{8}$$

$$= -\left(\gamma_E^{\mu}\partial_{\mu} + m\right). \tag{9}$$

In Minkowski space we define (this seems to be everyone's convention)

$$\gamma_5 = \gamma^5 \equiv i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = -i\gamma_0 \gamma_1 \gamma_2 \gamma_3 \tag{10}$$

$$\rightarrow i(i^3)(-i)^3\gamma^4\gamma^1\gamma^2\gamma^3 \tag{11}$$

$$= -\gamma_E^1 \gamma_E^2 \gamma_E^3 \gamma_E^4$$

$$\equiv -\gamma_E^5$$

$$(12)$$

$$(13)$$

$$\equiv -\gamma_E^5 \tag{13}$$

Again, note the signs for (co)contravariant gamma matrices, and the last minus sign comes from anti-commuting γ^4 to the end.

The chiral basis in Minkowski space is (i.e., Peskin)

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

where
$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Our code conventions (alg_qpropw::Wilson_matrix):

gamma(XUP)	gamma(YUP)	gamma(ZUP)	gamma(TUP)	gamma(FIVE)
$0\ 0\ 0\ i$	0 0 0 -1	0 0 i 0	$0\ 0\ 1\ 0$	$1\ 0\ 0\ 0$
0 0 i 0	$0\ 0\ 1\ 0$	0 0 0 -i	$0\ 0\ 0\ 1$	$0\ 1\ 0\ 0$
0 -i 0 0	$0\ 1\ 0\ 0$	-i 0 0 0	$1\ 0\ 0\ 0$	0 0 -1 0
-i 0 0 0	-1 0 0 0	0 i 0 0	$0\ 1\ 0\ 0$	0 0 0 -1

Thus, it appears that our conventions are

$$i\gamma^1 = \gamma_E^1 \tag{14}$$

$$i\gamma^{1} = \gamma_{E}^{1}$$

$$-i\gamma^{2} = \gamma_{E}^{2}$$

$$i\gamma^{3} = \gamma_{E}^{3}$$

$$\gamma^{0} = \gamma_{E}^{4}$$

$$(14)$$

$$(15)$$

$$(16)$$

$$i\gamma^3 = \gamma_E^3 \tag{16}$$

$$\gamma^0 = \gamma_E^4 \tag{17}$$

or that our $\gamma^{1,3}$ are minus everyone else's

I have checked in Mathematica (my Dirac.nb) that $\gamma_E^1 \gamma_E^2 \gamma_E^3 \gamma_E^4 = \gamma_E^5$. Now, our $\gamma_E^5 =$ minus Peskin's as expected if we start from the same Minkowski space basis, but we have flipped the sign of γ^1 and γ^3 ! This is ok, since two minus signs give a plus.

Now look at the gauge part. In Minkowski space

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \theta \frac{g^2}{16\pi^2}F^{\mu\nu}\tilde{F}_{\mu\nu}$$
 (18)

$$S = \int dt \int d^3x \, \mathcal{L} \tag{19}$$

$$= -\int dt \int d^3x \left(\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \theta \frac{g^2}{16\pi^2} F^{\mu\nu} \tilde{F}_{\mu\nu} \right)$$
 (20)

Analytically continue to Euclidean space,

$$t \rightarrow -i\tau$$
 (21)

$$t \rightarrow -i\tau \tag{21}$$

$$F^{0i} \rightarrow iF^{4i} \tag{22}$$

$$F_{0i} \rightarrow -iF^{4i} \tag{23}$$

$$F^{ij} \rightarrow -F^{ij} \tag{24}$$

$$F^{ij} \rightarrow -F^{ij}$$
 (24)

$$F_{ij} \rightarrow -F^{ij}$$
 (25)

The continuation of the field strength term can be worked out from

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \tag{26}$$

$$A^0 \rightarrow -iA^4 \tag{27}$$

$$\tilde{F}_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta} F^{\alpha\beta} \tag{28}$$

and similarly for the (contra)covariant (dual)field strength. A^{μ} is the four-vector potential and $\epsilon_{0123} = +1$. Then

$$\exp iS \rightarrow \exp \left\{ i \int -id\tau \int d^3x \left(-\frac{1}{4} F^{\mu\nu} F^{\mu\nu} - i\theta \frac{g^2}{16\pi^2} F^{\mu\nu} \tilde{F}^{\mu\nu} \right) \right\}$$
 (29)

$$= \exp\left\{-\int d\tau \int d^3x \left(\frac{1}{4}F^{\mu\nu}F^{\mu\nu} + i\theta \frac{g^2}{16\pi^2}F^{\mu\nu}\tilde{F}^{\mu\nu}\right)\right\}$$
(30)

$$= \exp\{-S_E\}. \tag{31}$$

The $F^{\mu\nu}F_{\mu\nu}$ term is easy- it does not flip sign. The θ term is a bit more work. It picks up an isince each contribution has one and only one factor of F^{0i} or F^{i0} . To get the sign right, it is easiest to just write out the whole term,

$$F^{\mu\nu}\tilde{F}_{\mu\nu} = 2\sum_{i} F^{0i}\tilde{F}_{0i} + 2\sum_{i,j>i} F^{ij}\tilde{F}_{ij}$$
(32)

$$\sum_{i \neq 0} F^{0i} \tilde{F}_{0i} = F^{01} \tilde{F}_{01} + F^{02} \tilde{F}_{02} + F^{03} \tilde{F}_{03}$$
(33)

$$= \frac{1}{2} \left(F^{01} (\epsilon_{0123} F^{23} + \epsilon_{0132} F^{32}) + F^{02} (\epsilon_{0213} F^{13} + \epsilon_{0231} F^{31}) + \right)$$
(34)

$$F^{03}(\epsilon_{0321}F^{21} + \epsilon_{0312}F^{12})) \tag{35}$$

$$= (F^{01}F^{23} - F^{02}F^{13} + F^{03}F^{12}) (36)$$

and on analytic continuation

$$\sum_{i \neq 0} F^{0i} \tilde{F}_{0i} \rightarrow (iF^{41}(-1)F^{23} - iF^{42}(-1)F^{13} + iF^{43}(-1)F^{12})$$
(37)

$$= i(F^{14}F^{23} - F^{24}F^{13} + F^{34}F^{12}) (38)$$

$$= \frac{i}{2} \sum_{i \neq 4} F^{i4} \epsilon_{i4kl} F^{kl} \tag{39}$$

$$= i\sum_{i\neq 4} F^{i4}\tilde{F}^{i4} \tag{40}$$

where $\epsilon_{1234} \equiv +1$.

$$\sum_{i,j>i} F^{ij} \tilde{F}_{ij} = F^{12} \tilde{F}_{12} + F^{13} \tilde{F}_{13} + F^{23} \tilde{F}_{23}$$

$$\tag{41}$$

$$= \frac{1}{2} \left(F^{12} (\epsilon_{1203} F^{03} + \epsilon_{1230} F^{30}) + F^{13} (\epsilon_{1302} F^{02} + \epsilon_{1320} F^{20}) \right) \tag{42}$$

$$+F^{23}(\epsilon_{2301}F^{01} + \epsilon_{2310}F^{10})) \tag{43}$$

$$+F^{23}(\epsilon_{2301}F^{01} + \epsilon_{2310}F^{10}))$$

$$= (F^{12}F^{03} - F^{13}F^{02} + F^{23}F^{01})$$

$$(43)$$

On analytic continuation we have

$$\left(F^{12}F^{03} - F^{13}F^{02} + F^{23}F^{01}\right) \rightarrow \left(-F^{12}(i)F^{43} - -F^{13}(i)F^{42} + -F^{23}(i)F^{41}\right) \tag{45}$$

$$= i \left(F^{12} F^{34} - F^{13} F^{24} + F^{23} F^{14} \right) \tag{46}$$

$$= iF^{ij}\epsilon_{ij\alpha\beta}F^{\alpha\beta} \tag{47}$$

$$= iF^{ij}\tilde{F}^{ij}. (48)$$

Thus

$$\exp iS = \exp -i\theta \int dt \int d^3x F^{\mu\nu} \tilde{F}_{\mu\nu} \tag{49}$$

$$\rightarrow \exp{-i\theta} \int -id\tau \int d^3x i F^{\mu\nu} \tilde{F}^{\mu\nu} \tag{50}$$

$$= \exp i^3 (-1)^2 \theta \int d\tau \int d^3x F^{\mu\nu} \tilde{F}^{\mu\nu}$$
 (51)

$$= \exp -i\theta \int d\tau \int d^3x F^{\mu\nu} \tilde{F}^{\mu\nu}. \tag{52}$$

So the θ term does not change sign under analytic continuation.